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Abstract—The emerging Software-Defined Networks (SDN)
offer several advantages over traditional networking technologies.
We explore how multicast communication required in many
important applications can be organized and implemented ef-
ficiently in SDN. Our contributions in this paper are as follows:
1) We propose and implement a simple yet powerful multicast
scheme for SDN that gives the sender full control over the
members of multicast groups which is absent in traditional IP
multicast; 2) We develop algorithms for calculating multicast
trees based on Branch-Aware Modification (BAM) and Early
Branching (EB) techniques that together allow for maximally
reusing unicast flow table entries in SDN switches, thereby
improving the scalability of our SDN multicast; 3) We implement
our approach as an extendable module within the open-source
SDN controller Floodlight. Our approach and its implementation
are evaluated using Mininet simulation and experiments in a real
OpenFlow-enabled network.

I. INTRODUCTION

Multicast communication is useful for many classes of net-

worked applications, especially when the same data has to be

sent frequently to several receivers, such as in video streaming

or distributed datacenter applications. In traditional networks,

the logic of packet forwarding is distributed across the network

components like switches and routers, with only limited pos-

sibilities for a centralized control over forwarding decisions.

Hence, current standards and algorithms for multicast mostly

work in a distributed, receiver-initiated manner: receivers must

know the multicast address of a desired service in advance and

they explicitly subscribe to the corresponding multicast group

at specific routers by using the IGMP protocol [1]. This design

of the IP multicast is not only intransparent for the receivers

but it has also other drawbacks for important applications

like teleconferencing, file transfer, etc.: a) the sender has no

control over the members of a multicast group, e. g., it cannot

exclude a certain receiver from the multicast communication;

b) computation-intensive approaches like Steiner trees are

difficult to compute in a distributed manner [2] and, thus,

are avoided in current multicast standards, e. g., PIM-SM [3],

which mostly use simpler but less scalable Shortest-Path
Trees (SPT).

Software-defined Networking (SDN) is an emerging net-

work architecture in which a central control instance, the

so-called SDN controller, takes over the forwarding logic of

the underlying network components by installing flow table

entries in them through interfaces like OpenFlow [4]. While

also the traditional, IP-based multicast using IGMP can be

implemented in SDN (e. g., as described in [5]), a major

bottleneck for both, unicast and multicast communication in

SDN, is the limited capacity of flow tables as illustrated

in [6]. Since using multicast incurs additional flow table entries

besides unicast entries, this bottleneck becomes a major hurdle

for the efficient utilization of multicast in SDN.

Previous work has addressed possibilities to improve the

scalability of multicast (i. e., to increase the number and size of

multicast groups that can be accommodated in the network) by

efficiently using the available flow table space. Kanzoi et al. [6]

introduce a framework for the distribution of flow table entries.

Li et al. [7] demonstrate how flow tables can be compressed

using hash functions. Another approach to the scalable SDN

multicast is to minimize the number of switches and/or the

number of needed multicast entries in the switches’ flow tables

by utilizing advanced multicast trees. Yang et al. [8] introduce

so-called branch forwarding to minimize flow table entries.

This technique is applied by Huang et al. [9] in the Branch-
aware Steiner Tree (BST). However, their approach introduces

an additional overhead by relying on IP tunneling [10].

The contributions and structure of this paper are as follows:

1) We propose a simple yet powerful scheme for SDN mul-

ticast which overcomes the drawbacks of traditional IP

multicast by exploiting the centralized architecture of SDN.

Our approach is sender-initiated and transparent for the

receiver, i. e., the sender has full control over the receiving

endpoints and no action is required from the receiver to

participate in multicast communication (Section II).

2) We develop algorithms for calculating multicast trees that

allow for maximally reusing unicast flow table entries

for multicast, thereby improving the scalability of SDN

multicast without IP tunneling (Section III).

3) We implement our approach as an extendable module

within the open-source SDN controller Floodlight [11]

and we develop a C++ library for the application-side

management of multicast groups (Section IV).

Section V concludes the paper with an experimental evaluation

of our multicast approach in both a Mininet-simulated network

environment and a real, SDN-enabled testbed.
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II. SDN-BASED MULTICAST

Figure 1 illustrates the idea of our SDN multicast scheme.

If Host 1 (sender) is going to send data to the hosts 2 and 3

(receivers) using multicast, it specifies a multicast group com-

prising the IP addresses of the receivers (step � in Figure 1).

The addresses are then sent to the SDN controller (step �)

via its so-called Northbound API. Subsequently, in step �,

the controller defines a new multicast address for this group

(20.0.0.1 in Figure 1) and installs this multicast group in the

network by adding a new entry to the flow table of each switch

on the routes to the receivers (Switch A and Switch B in the

figure). Which routes are chosen by the SDN controller to

forward multicast packets to the members of a multicast group

is calculated in form of a multicast tree which we discuss in

Section III. After installing the new multicast group in the

network, the controller returns the multicast address of the

group to the sender (step �). The sender can then send data

(packet d in step �) to the members of the multicast group by

using this address. When a packet sent to the multicast address

arrives at Switch A, it is matched to the corresponding entry

in A’s flow table and is forwarded to Switch B. Switch B then

transforms the packet’s header: the multicast address in the

packet is replaced by the unicast address of the corresponding

receiver (UDP ports and MAC addresses are omitted for

simplicity in Figure 1). Finally, Switch B forwards the packet

to the ports on which the receivers are connected to B (step �
with transformed data packets d* and d+).
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Fig. 1. Our SDN-based multicast scheme

In our multicast scheme in Figure 1, when the transformed

packets sent to a multicast address finally arrive at the receiver,

they look like normal, directly addressed unicast packets

because the multicast address is replaced by the receiver’s IP

address as described above. Thereby, our multicast scheme

overcomes the drawbacks of the traditional IP multicast in

which receivers must subscribe for a multicast group at specific

multicast routers and potentially every member of the group

can send data to the multicast address, which is usually not

desirable. Indeed, our multicast approach is transparent for

receivers: they cannot differentiate multicast packets from

unicast packets, and the multicast is initiated by the sender

– no action is required from the receivers to participate in

multicast communication. At the same time, the sender has

full control over the receiving endpoints, i. e., it can add or

remove receivers to or from a multicast group at any time.

Furthermore, only the sender that has specified a multicast

group is able to send data to the corresponding multicast

address and reach the members of this group, because the

sender’s IP address is referenced in the switches’ flow table

entries. If a network node other than the sender of a multicast

group tries to send data to the group’s multicast address, the

packets will not match the flow table entries and will be

dropped or forwarded to the controller (e. g., to trigger access

violation routines) depending on the controller’s configuration.

Our SDN-based multicast utilizes the OpenFlow proto-

col [12] for the communication between the controller and

switches, which is the de-facto standard for SDN. Every switch

must support OpenFlow’s optional action for the transforma-

tion of packet headers in step � in Figure 1.

We will show in Section III that, in contrast to Figure 1

(which illustrates the general concept of our multicast ap-

proach for SDN), it is preferable that the transformation of

multicast packets into unicast packets takes place near to

the root (sender) of the multicast tree, in order to reuse

unicast entries which might already exist in the switches’ flow

tables. For instance, this transformation could be performed in

Figure 1 by Switch A instead of Switch B, in order to reuse the

unicast entries in B’s flow table. Even if such unicast entries

must be newly created for the multicast, they can be used

afterwards for unicast and multicast communication between

the sender and a specific receiver. Our experimental evaluation

in Section V shows that this reuse by far compensates the fact

that flow table entries for the transformation of packet headers

are larger than “normal” forwarding entries and, therefore,

consume more space. The size of such a transformation entry

depends on the number of receivers in a multicast group for

which multicast packets have to be transformed into unicast

packets: for every receiver, its IP and MAC addresses as well

as the corresponding output port have to be saved in the flow

table. In Figure 1, the transformation entry in Switch B’s flow

table comprises the destination addresses of hosts 2 and 3

as well as the output ports 2 and 3 on which the hosts are

connected to the switch.

Minimizing flow table entries by shifting the transformation

closer to the root of a multicast tree increases the over-

all bandwidth utilization of the network, which contradicts

the very reason to use multicast for group communication.

Therefore, we introduce an algorithm in Section III-A which

performs such shifting in a way which preserves the band-

width utilization. Additionally, we introduce a multicast tree

with properties which pose a reasonable compromise between

minimizing flow table entries on the one hand and reducing

bandwidth utilization on the other hand.
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III. MULTICAST TREES

In traditional IP multicast, the calculation of multicast trees

is based on distributed algorithms which incur a communica-

tion overhead and have to suit the rather limited computational

capacity of switches. Hence, complex algorithms for construct-

ing advanced multicast trees (e. g., Steiner trees [2]) are often

avoided in traditional IP multicast and rather Shortest-Path

Trees (SPT) are used which limits the number and size of

multicast groups that can be accommodated in the network.

In our SDN multicast scheme, multicast trees are calculated

centrally by the SDN controller which has a global view over

the network topology and is usually deployed on a powerful

server machine. Hence, there is no communication overhead

and the computational expense for calculating multicast trees

is no more a limiting factor in our approach; therefore, we

concentrate on another potential limiting factor – the capacity

of the switches’ flow tables. For instance, common OpenFlow

switches like Dell PowerConnect 8132F, HP ProCurve 5406zl,

and Pica8 P-3290 can store about 750, 1500, and 2000 entries,

respectively [13].
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Fig. 2. Example network topology for a multicast scenario

As our running example, we will consider the topology

depicted in Figure 2 to illustrate the algorithms for calculating

multicast trees as subgraphs of this topology. In the figure,

square nodes represent hosts while circle nodes represent

switches, e. g., h1 denotes Host 1, and s1 denotes Switch 1. We

further differentiate between two types of switch nodes in a

multicast tree: a) unicast nodes store unicast entries matching

against unicast IP addresses only; b) multicast nodes store

multicast entries matching against multicast IP addresses and,

thus, these nodes can forward multicast packets or transform

them into unicast packets. According to this definition, both

switches A and B in Figure 1 are multicast nodes, because

their flow tables each comprise an entry for matching packets

against the multicast address 20.0.0.1. However, if the trans-

formation into unicast packets would take place in Switch A,

then Switch B would become a unicast node that forwards the

transformed unicast packets d* and d+ to the corresponding

receivers.

A. Branch-aware Modification

Our approach to improve multicast scalability (i. e., to

increase the number and/or size of multicast groups despite

the limited capacity of flow tables) is to reduce the number

of multicast switch nodes in an arbitrary multicast tree by

applying the so-called Branch-aware Modification (BAM) to

this tree. BAM takes a tree that contains only multicast nodes

and it identifies nodes between a receiver and its nearest branch

node (i. e., a node with more than two edges to the adjacent

switch and/or host nodes) as potential unicast nodes.

Algorithm 1 BAM: identifying unicast nodes

for all v ∈ R do
u← get parent(v)

while node degree(u) ≤ 2 & u �= root do
mark u as unicast node

u← get parent(u)

end while
end for

Algorithm 1 shows the pseudocode for the Branch-aware

Modification. R denotes the set of receiving hosts in the input

tree (the leaves of the tree), root is the switch node directly

connected to the sender. Although our algorithm uses a nested

loop, its computational complexity is only O(|V |), i. e., linear

in the number of network nodes, because every node is visited

not more than once; depending on the topology there may be

nodes which are not visited at all.

We usually take Shortest-Path Trees (SPT) as input for

BAM, because they are most widely used in multicast, but

the BAM algorithm is applicable to an arbitrary tree. Trees

in which all nodes identified by the BAM are modified into

unicast nodes gain the prefix Branch-aware: for example, a

BAM-modified SPT is called Branch-aware SPT or BSPT.

BAM

s4

s3

s7

s8

s1

s2

h2h1

h3

h7

Unicast Node

Multicast Node

s4

s3

s7

s8

s1

s2

h2h1

h3

h7

(a) SPT (b) BSPT

Fig. 3. Example of the Branch-aware Modification

Figure 3 (a) depicts an example SPT for the topology of

Figure 2, with h1 as sender and h2, h3 and h7 as receivers;

all switch nodes in this tree are multicast nodes. Applying the

BAM algorithm to this SPT results in the BSPT depicted in

Figure 3 (b). Here, s3 is the first branch node on the path from

the receivers h2 and h7 to the sender h1. Therefore, all nodes

on the paths from s3 to h2 and h7 are modified to unicast

nodes. The same applies to the nodes on the path from h3
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to s1. Summarizing, the BAM algorithm modifies s2, s4, s7
and s8 to unicast nodes. The resulting multicast tree contains

only two nodes which need to store multicast entries while the

original SPT contains six multicast switches.

At the time of the multicast group creation as described in

Section II, unicast entries may already exist in some switches

due to former unicast communication in the network; in this

case, they will be simply re-used after BAM. If no unicast

entries are present, then our approach installs them instead of

multicast entries; the advantage is that they can be reused after-

wards in both multicast and unicast communication, whereas

multicast entries can only be used for a specific multicast

group and always need to be explicitly installed for every new

multicast tree.

Fig. 4. Comparison of two branch-aware SPTs

The BAM procedure is obviously most advantageous for

trees which have long paths connecting single receivers with

the sender. In this case, branching happens early (near to the

sender), such that only few multicast nodes are needed. For

example, Figure 4 depicts two different SPTs, (a) and (b), for a

multicast group with h1 as sender and h3 and h4 as receivers.

The BAM (Algorithm 1) applied to these trees produces output

trees shown in Figure 4 (c) and (d), correspondingly. We

observe that the “early branching” tree SPT 2 in Figure 4 (b)

greatly benefits from BAM: the number of multicast nodes is

reduced from 6 to 1. The “late branching” tree in Figure 4 (a)

also benefits from BAM, but on a smaller scale: the number

of multicast nodes decreases from 4 to 3. Note that BAM

always identifies some nodes as unicast nodes, unless every

receiver is directly connected to a branch node as for example

in a full binary tree. The BSPT in Figure 4 (d) requires more

bandwidth of the whole network than the BSPT depicted in (c).

In scenarios where bandwidth is a limiting factor, the BSPT

depicted in (c) is favorable. However, to achieve scalability in

the context of SDN multicast, one should consider trees with

the “early branching” property.

If a multicast group contains only one receiver, then the

multicast tree does not branch. In this very special case, every

node except the root is marked as a unicast node by the BAM

algorithm. The sender then sends its data via multicast to the

root switch which directly transforms the multicast packets to

unicast packets, i. e., the only multicast entry in the whole tree

is installed in the flow table of the root.

B. Early Branching Multicast Tree

In this section, we develop an algorithm which, for a given

network topology graph, finds an SPT with the early branching

property that is especially advantageous for applying BAM.

For a given topology graph, a given sender and a set of

multicast receivers, we define the Early Branching Shortest
Path Tree (EBSPT) as the SPT of this graph in which the

branch node nearest to the root has a minimal distance to the

root among all SPTs. For calculating this tree, we modify the

algorithm originally proposed in [14] for finding a Destination

Driven Shortest Path Tree (DDSPT). The DDSPT is exactly

the opposite of the EBSPT – it branches as far as possible

from the sender node.

Figure 4 (a) illustrates the DDSPT (equal to SPT 1 in the

figure) as a subgraph of the topology in Figure 2 for the

multicast group with h1 as sender and h3 and h4 as receivers.

This tree branches quite late because both receivers share the

path h1-s1-s3-s4. Applying the BAM to this DDSPT only

reduces the number of multicast nodes by one as depicted in

Figure 4 (c). Figure 4 (b) shows the EBSPT for the same

multicast group. As already discussed, applying the BAM

to this EBSPT significantly reduces the number of multicast

nodes as depicted in Figure 4 (d).

Algorithm 2 Computation of an EBSPT

T ← ∅
R← set of receivers

while ∃r ∈ R : r /∈ T do
U ← {u ∈ R \ T : min{distance to sender(u)}}
v ← v ∈ U
if |U | > 1 then

v ← {u ∈ U : max{distance to a recv in T(u)}}
end if
T ← T ∪ path(sender, v)

end while

The pseudocode to calculate the EBSPT is shown in

Algorithm 2. This greedy algorithm is similar to the Di-

jkstra algorithm for calculating an SPT. It uses two cri-

teria to choose a node at each step: the distance to

the sender (distance to sender) and the distance to the

nearest receiver that is already connected to the tree

(distance to a recv in T ). If two receivers have an equal

distance to the sender, then the original DDSPT algorithm [14]

would choose the receiver with the minimal second criterion.

To calculate the EBSPT, we choose the receiver with the

maximal second criterion: this causes the tree to branch early.
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(a) BEBSPT

(b) BDDSPT

Unicast Node

Multicast Node

Fig. 5. BEBSPT and BDDSPT in a Fat-Tree topology

Our modification of DDSPT does not change the computa-

tional complexity of the algorithm which, as shown in [14], is

O(|E| · log|V |) where |E| denotes the number of edges and

|V | is the number of nodes.

As a final example we will analyze the effectiveness of

early branching and branch awareness on the Fat-Tree topol-

ogy which is commonly used in datacenters, industrial, and

campus networks [15]. Figure 5 depicts a k-ary Fat-Tree (in

our case k = 4) in which switches are split in horizontal

levels, from top to bottom: core, aggregation, and edge level.

Let us consider for this topology a multicast group with

three receivers (denoted by R) and a sender denoted by S.

Figure 5 (a) depicts the BEBSPT and Figure 5 (b) depicts

the BDDSPT for this multicast group. As explained before,

these trees are built in two steps: 1) by executing the EBSPT

or the DDSPT algorithm, correspondingly – in the resulting

trees, all switch nodes will be multicast nodes; and then 2) by

applying the BAM transformation to the EBSPT or DDSPT

tree. We observe in Figure 5 that the BAM transformation is

beneficial in both cases: applying BAM to the DDSPT reduces

the amount of multicast nodes by 66 % as in Figure 5 (b), while

applying BAM to the EBSPT as in Figure 5 (a) is even more

beneficial: the total number of multicast nodes is reduced by

83 % from 12 to only 2 multicast nodes.

IV. IMPLEMENTATION

For implementing the SDN-based multicast introduced in

Section II and the algorithms for multicast tree calculation

introduced in Section III, only standard OpenFlow features

Floodlight Controller
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Module Applications
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. . .Multicast
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+deleteFlows(multicastGroup:MulticastGroup):void

MulticastManager

-nextMulticastAddress: static int

-multicastGroups: Set<MulticastGroup>
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<<Interface>>

IMulticastManagerService

net.�oodlightcontroller.multicast

EarlyBanchingSPTAlgorithm

DestinationDrivenSPTAlgorithm

ShortestPathTreeAlgorithm

Core Services

Internal Module API

Fig. 6. The MulticastManager module in the Floodlight Controller

are required. Therefore, most modern SDN controllers and

platforms can be easily extended to support our multicast

scheme. We decided to use the open-source SDN controller

Floodlight [11] which is widely used and benefits from an

active developer community. In its standard configuration,

Floodlight supports neither IPv4 multicast nor SDN-based

multicast; there exist third-party modules enabling multicast

with IGMP [16] [17].

We extended Floodlight by adding to the controller a new

module called MulticastManager. Figure 6 (upper half)

shows how the MulticastManager is integrated in the

Floodlight architecture as an additional core service that can

be used like any other module of Floodlight. It uses some

of Floodlight’s module applications through an internal API,

e. g., the Static Flow Pusher [11] to install flow table entries.

Figure 6 (lower half) shows the implementation of

our MulticastManager module in a modular, ex-

tendable manner. An arbitrary multicast tree algorithm

can be added to the module to replace or extend the

existing algorithms by implementing the abstract class

MulticastTreeAlgorithm. The network administrator

specifies which particular algorithm should be used via a con-

figuration file (multicast.properties). For example,

the entry algorithm=BEBSPT specifies that the Branch-

aware EBSPT should be used; this would lead to the execution

of Algorithm 2 followed by Algorithm 1, both presented in

the previous section. Internally, this is realized by providing

an EBSPT as input to the BAM algorithm.

To utilize our multicast scheme in networked applications

written in C++, we develop a C++ library which we call

SDN Module. Listing 1 demonstrates an example: the us-

age of the SDN Module by an application developer for

the specification of the example multicast group shown in

Figure 1. In lines 4–8 of Listing 1, the SDN Module is
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activated with the address and port of the SDN controller.

The controller type is set to REST [18], so that the application

communicates with the controller via its REST-based North-

bound API as, e. g., required by Floodlight. After activating

the SDN Module, a new multicast group is created in lines

11–13, and hosts 2 and 3 are added to this group. The

SDN Module provides a callback mechanism, e. g., for receiv-

ing a multicast address from the controller when multicast

has been installed in the network. To use this mechanism,

an implementation of the MulticastListener interface

is registered for the multicast group as shown in line 16.

Finally, in line 17, multicast for the group is activated by

calling function activateMulticast. This triggers the

communication between the application and the controller and

transfers the addresses of the multicast group to the controller

as in step � of Figure 1. Subsequently, the controller calculates

a multicast tree for the group and adds the corresponding flow

table entries in the involved switches (step �).

1 using namespace sdn;
2
3 // initialize SDN Module
4 SDNModuleProperties props{};
5 props.controller = Endpoint("10.0.0.254", 6300);
6 props.controller_type = ControllerType::REST;
7 SDNModule sdn_mod{};
8 sdn_mod.activate(props);
9

10 // specify multicast group
11 auto& grp = sdn_mod.createMulticastGroup();
12 grp.addDstEndpoint(Endpoint{"10.0.0.2", 1234});
13 grp.addDstEndpoint(Endpoint{"10.0.0.3", 1234});
14
15 // register listener an activate multicast
16 grp.registerListener(listener);
17 grp.activateMulticast();

Listing 1. Example usage of the SDN Module

V. EXPERIMENTAL EVALUATION

We evaluate our SDN multicast approach, the suggested al-

gorithms for building multicast trees, and their implementation

in the Floodlight controller, on two evaluation platforms:

• the network emulation software Mininet [19] which cre-

ates a virtual SDN-enabled network on a single computer;

• the Network Laboratory NetLab at the University of

Münster which is an SDN network with hosts connected

via OpenFlow-enabled switches.

To generate network load in SDN multicast experiments,

we transfer 100 MB of random data via UDP from the sender

to the receivers. All results regarding time and CPU usage are

the arithmetic average of five experiment cycles (the observed

differences across several runs did not exceed 5 %).

A. Mininet Simulation

The example topology depicted in Figure 2 is emulated in

Mininet to evaluate the behavior of different multicast trees

in SDN-enabled networks. The evaluated multicast trees are

depicted in Figure 7. Mininet emulates OpenFlow-enabled
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Fig. 7. Multicast trees evaluated in Mininet

switches which we connect to the Floodlight controller ex-

tended by our multicast module (Section IV) and installed on

a separate machine. In our experiments, h1 is the sender and

h2–h7 are the six receivers of the multicast group.

Since flow tables are a potential bottleneck in SDN, we

measure the number of required flow table entries per multicast

tree. We differentiate between unicast and multicast entries

and we consider trees with fewer multicast entries superior to

trees which require more such entries, because fewer multicast

entries mean that more unicast entries can be reused afterwards

for either multicast or unicast communication whereas multi-

cast entries are not reusable.

Figure 8 shows the number of required multicast (black)

and unicast (gray) flow table entries for the multicast trees

depicted in Figure 7. We observe that DDSPT minimizes the

total number of flow table entries (6 entries instead of 20 as

compared to unicast) while BEBSPT minimizes the number of

required multicast entries (4 entries instead of 8 as compared

to the EBSPT).
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Figure 9 demonstrates that multicast significantly reduces

the bandwidth utilization (number of forwarded packets) as

compared to unicast which generates much higher load be-

cause the same data has to pass the same switches multi-

ple times. We observe that the bandwidth utilization is not

increased when applying the BAM to multicast trees (e. g.,

BDDSPT vs. DDSPT, and BEBSPT vs. EBSPT) because every

packet passes a switch only once. Although the EBSPT maxi-

mizes the amount of edges in the multicast tree (which allows

to reduce the number of multicast entries), the bandwidth

utilization is still reduced by ∼ 66 % as compared to unicast.

As expected, the DDSPT reduces the bandwidth utilization

stronger than the EBSPT (∼ 25 %) because it uses fewer edges

in the multicast tree.

In Figure 10, we evaluate the difference between BDDSPT

and BEBSPT by examining the scenario of Figure 4: h1 creates

a multicast group with h3 and h4 as members. The flow table

entry requirements of the BDDSPT (in Figure 4 (c)) and the

BEBSPT (in Figure 4 (d)) confirm that the DDSPT decreases

the total number of flow table entries while the BEBSPT

decreases the number of multicast entries.

Figure 11 shows experiments on the Mininet-emulated

topology of the pan-European OFELIA testbed [20] with

OpenFlow islands in Zurich, Ghent, and Trento. Figure 12

shows the BEBSPT calculated for a multicast group with

host S as sender and all other hosts as receivers. As illustrated
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in Figure 11, the total number of required flow table entries

has been reduced by 66 % by using multicast with EBSPT

instead of unicast. The number of required multicast entries is

even further reduced by 50 % when BEBSPT is employed.

B. The NetLab OpenFlow Network

Figure 13 shows the NetLab’s network topology that con-

sists of three OpenFlow-enabled software switches s1–s3 using

Open vSwitch 1.10.2, each running on an Intel Xeon E3-

1240v2 server machine with Intel Gigabit ET dual port server

adapters. In our experiments, the receivers h2–h4 run on

identically equipped machines while the sender h1 uses a

machine with two Intel Xeon E5-2620 processors and 26 GB

RAM. The traffic is forwarded with a link speed of 1 Gbit/s.

For this very simple topology, the implemented algorithms

(EBSPT, DDSPT), including the branch-aware versions of

both, compute the same multicast tree depicted in Figure 13.

The BAM version only transforms multicast packets to unicast

packets at s3 which does not change the results regarding

time and CPU utilization. Because of this, we only evaluate

our SDN multicast scheme and its implementation without

considering different multicast trees.

Figures 14 and 15 show the results of the experiment in the

NetLab: to send 100 MB from h1 to all three receivers using

links with 1 GB/s bandwidth, multicast takes about 30 % of

the time needed by unicast, while the CPU load of multicast

is also slightly lower.

Fig. 13. The
Network Labo-
ratory NetLab
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VI. CONCLUSION

Our contributions in this paper are three-fold. Firstly, we

propose a simple yet powerful multicast scheme for SDN that

exploits its controller-centered architecture to overcome the

drawbacks of the traditional IP multicast – the lack of multicast

group membership control for the sender and limited scalabil-

ity. Secondly, we develop an approach for calculating multicast

trees based on Branch-Aware Modification (BAM) and Early

Branching (EB) techniques to improve the scalability of the

SDN multicast. Thirdly, we implement the multicast scheme

for SDN and the algorithms for calculating multicast trees in

an extendable module for the SDN controller Floodlight and

we evaluate our approach in both, simulated networks using

Mininet and in a real, OpenFlow-enabled network.

The key feature of our EBSPT multicast tree is that it

comprises long paths connecting the sender to single receivers

while avoiding paths shared by several receivers. This causes

the tree to branch early which is advantageous for apply-

ing BAM afterwards. Such trees have not been previously

considered for the traditional IP multicast, because they may

potentially increase the bandwidth utilization in the network,

since the number of edges in EBSPT is maximized. Our

evaluation in Section V shows that, for SDN multicast, the

increase in bandwidth utilization is negligible as compared to

the advantages of reducing the required number of flow table

entries.

REFERENCES

[1] B. Cain, S. Deering, I. Kouvelas et al., “Internet Group Management
Protocol, Version 3,” IETF RFC 3376, October 2002.

[2] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem,
ser. Annals of Discrete Mathematics. North-Holland, 1992.

[3] D. Estrin, D. Farinacci, A. Helmy et al., “Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol Specification,” IETF RFC
2362, June 1998.

[4] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow: Enabling
Innovation in Campus Networks,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[5] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data Center Multicast
using Software Defined Networking,” in Sixth International Conference
on Communication Systems and Networks (COMSNETS), 2014, Jan
2014, pp. 1–8.

[6] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing Tables in
Software-Defined Networks,” in IEEE Proceedings of INFOCOM, 2013,
pp. 545–549.

[7] D. Li, H. Cui, Y. Hu et al., “Scalable Data Center Multicast using Multi-
Class Bloom Filter,” in 19th IEEE International Conference on Network
Protocols (ICNP), Oct 2011, pp. 266–275.

[8] D.-N. Yang and W. Liao, “Protocol Design for Scalable and Adaptive
Multicast for Group Communications,” in IEEE International Confer-
ence on Network Protocols (ICNP 2008), Oct 2008, pp. 33–42.

[9] L.-H. Huang, H.-J. Hung, C.-C. Lin et al., “Scalable Steiner Tree for
Multicast Communications in Software-Defined Networking,” ArXiv e-
prints, 2014.

[10] W. Simpson, “IP in IP Tunneling,” Internet Requests for Comments,
RFC 1853, 1995. [Online]. Available: https://tools.ietf.org/html/rfc1853

[11] (2015) Floodlight OpenFlow Controller. [Online]. Available: http:
//www.projectfloodlight.org

[12] (2012) OpenFlow Switch Specification Version 1.3.0 (Wire
Protocol 0x04). [Online]. Available: https://www.opennetworking.
org/sdn-resources/technical-library
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